The Triton

News

Researches turn seawater into fuel

ADVERTISEMENT

Researchers at the U.S. Naval Research Laboratory (NRL) have demonstrated proof-of-concept for making fuel from seawater. The research is based on NRL technologies developed to recover carbon dioxide (CO2) and hydrogen (H2) from seawater and then convert them to a liquid hydrocarbon fuel.


Fueled by a liquid hydrocarbon — a component of NRL’s gas-to-liquid (GTL) process that uses CO2 and H2 as feedstock — the research team demonstrated sustained flight of a radio-controlled P-51 replica of the legendary Red Tail Squadron, powered by an off-the-shelf and unmodified two-stroke internal combustion engine.


Using an innovative and proprietary NRL electrolytic cation exchange module (E-CEM), both dissolved and bound CO2 are removed from seawater at 92 percent efficiency by re-equilibrating carbonate and bicarbonate to CO2 and simultaneously producing H2, the NRL said in a statement. The gases are then converted to liquid hydrocarbons by a metal catalyst in a reactor system.


“In close collaboration with the Office of Naval Research P38 Naval Reserve program, NRL has developed a game-changing technology for extracting, simultaneously, CO2 and H2 from seawater,” said Dr. Heather Willauer, an NRL research chemist. “This is the first time technology of this nature has been demonstrated with the potential for transition, from the laboratory, to full-scale commercial implementation.”


CO2 in the air and in seawater is an abundant carbon resource, but the concentration in the ocean (100 milligrams per liter [mg/L]) is about 140 times greater than that in air, and 1/3 the concentration of CO2 from a stack gas (296 mg/L), the statement said. Two to three percent of the CO2 in seawater is dissolved CO2 gas in the form of carbonic acid, one percent is carbonate, and the remaining 96 to 97 percent is bound in bicarbonate.


NRL has made significant advances in the development of a gas-to-liquids (GTL) synthesis process to convert CO2 and H2 from seawater to a fuel-like fraction of C9-C16 molecules. In the first patented step, an iron-based catalyst has been developed that can achieve CO2 conversion levels up to 60 percent and decrease unwanted methane production in favor of longer-chain unsaturated hydrocarbons (olefins). These value-added hydrocarbons from this process serve as building blocks for the production of industrial chemicals and designer fuels.


In the second step these olefins can be converted to compounds of a higher molecular using controlled polymerization. The resulting liquid contains hydrocarbon molecules in the carbon range, C9-C16, suitable for use a possible renewable replacement for petroleum-based jet fuel.


The predicted cost of jet fuel using these technologies is in the range of $3-$6 per gallon, and with sufficient funding and partnerships, this approach could be commercially viable within the next seven to 10 years, the NRL said. Pursuing remote land-based options would be the first step toward a future sea-based solution.


The process efficiencies and the capability to simultaneously produce large quantities of H2, and process the seawater without the need for additional chemicals or pollutants, has made these technologies far superior to previously developed and tested membrane and ion exchange technologies for recovery of CO2 from seawater or air.


Read the full release here: http://www.nrl.navy.mil/media/news-releases/2014/scale-model-wwii-craft-takes-flight-with-fuel-from-the-sea-concept

To see a video, click here;

http://www.maritime-executive.com/article/Fuel-from-Seawater-Concept-Takes-Flight-2014-04-09/

 

Share This Post

Leave a comment

Your email address will not be published. Required fields are marked *

Please answer the question below to leave a comment. * Time limit is exhausted. Please reload CAPTCHA.

Editor’s Picks

Triton Expo is Oct. 12

Mid-October is time for The Triton’s biggest event of the year, our fall Triton Expo. This year, we’ve gathered about 50 businesses to …

Women just do their jobs in yachting; rooming, agencies and hiring could improve

Women just do their jobs in yachting; rooming, agencies and hiring could improve

When we decided to gather a group of women for a Triton From the Bridge lunch, it sounded like a great idea, but as soon as we all sat …

Doors, power, access surprise firefighters and crew in yacht training

Doors, power, access surprise firefighters and crew in yacht training

As part of the fire team on M/Y Archimedes, Bosun Max Haynes knows how to fight fire onboard the 222-foot (68m) Feadship. But he was …

Crew Unlimited and ICT in Ft. Lauderdale join with Bluewater in Europe

Crew Unlimited and ICT in Ft. Lauderdale join with Bluewater in Europe

Crew, employees, industry expect opportunities as European and U.S. companies partner to expand yacht crew training, …

Events